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Implementation of Radiation Boundary
Conditions in the Finite Element
Analysis of Electromagnetic
Wave Propagation
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Abstract —“Radiation boundary conditions” are formulated which
permit the simulation of two-dimensional electromagnetic wave phenom-
ena with the finite element method using conventional elements over a
bounded domain. Implementation of such boundary conditions pre-
serves the symmetry of the global stiffness matrix with all the advan-
tages that this implies, including economy of storage and solution. A
number of wire-antenna systems have been modeled with this technique
in a finite element computer program called FEAST. The results demon-
strate good agreement with published reference data.

I. InTRODUCTION

MONG the many applications using eclectromagnetic

adiation as a penetrating source of heat, the authors
are investigating novel schemes for enhancing the recovery of
highly viscous petroleum oil from underground deposits us-
ing subterranean electrodes and antennas [1]-[3]. To help
understand the processes and to explore the technical and
economic merits of electromagnetic heating of oil-bearing
formations at radio frequencies, a numerical simulator called
FEAST has been developed.

FEAST models the simultaneous propagation of electro-
magnetic fields and diffusion of heat through isotropic mate-
rials in which the electrical and thermal properties are
generally inhomogeneous and temperature dependent. It
provides an azimuthally symmetric two-dimensional solution
for both the transient heat flow equation and Maxwell’s
equations, which, when coupled through the temperature-
dependent material properties, govern the heating processes.

Because material inhomogeneities play a large role in the
phenomena under consideration, the finite element method
[4], with its straightforward approach to handling material
properties, is the solution method adopted in FEAST. Other
schemes, notably the method of moments [5] and the bound-
ary element technique [6], treat the variation of material
properties with difficulty. The finite element approach has
the further desirable characteristic that the node density can
be concentrated in those places where the solution varies
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most rapidly or where greatest accuracy is needed. This
contrasts with typical finite difference grids.

The finite element method relies on the existence of a
bounded spatial problem domain having a finite extent.
Antenna radiation problems, however, such as the one being
studied by the authors, are intrinsically unbounded, appar-
ently making finite elements ill suited for such applications.
Recognizing the versatility of the method, researchers in the
field of wave propagation phenomena have nevertheless
adapted the technique by either defining so-called infinite
elements [7] or coupling an interior finite element solution to
an exterior boundary element solution [8]. In this paper, we
describe an alternative adaptation of the finite element
method to unbounded problems in electromagnetic radia-
tion. Rather than alter the basic method itself, we have
devised a straightforward way to implement ‘“radiation
boundary conditions” at the outer clements of a conven-
tional finite element mesh. By making use of such radiation
boundary conditions in the electromagnetic solver within
FEAST, we have been able to successfully predict the elec-
trical characteristics of various antenna configurations.

The following sections outline our implementation of these
radiation boundary conditions for a Galerkin formulation of
the finite element method.

II. FiNniTE ELEMENT ANALYSIS OF MAXWELL’S
EquaTions

Preparatory to a discussion of the radiation boundary
condition, let us examine the finite element discretization of
Maxwell’s equations that is implemented in FEAST. With
such an analysis in hand, the computational benefits of the
radiation-boundary-condition approach to modeling electro-
magnetic propagation will be more readily apparent.

FEAST is structured to provide a near-field solution to the
problem of time-harmonic electromagnetic wave propagation
from an antenna into an inhomogeneous medium. Possible
geometries are restricted in FEAST to those exhibiting cylin-
drical symmetry in the azimuthal direction. In other words,
the material properties ¢, €, and p may vary spatially in the
radial and axial directions but must be independent of the
azimuthal coordinate ¢. A typical geometry, in this case a
generic dipole antenna, is depicted in Fig. 1.

0018-9480 /91 /0200-0267$01.00 ©1991 IEEE



268 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 39, NO. 2, FEBRUARY 1991

coordinate
system

Hy
E-field
excitation

f
|
|
I
!
W EZ
— A

|

|

|

|

1
axis of symmetry

Fig. 1. The coordinate system imposed on a typical cylindrically sym-
metric wire antenna is shown along with the orientation of the electro-
magnetic field components.

Assuming a time dependence of e/“’, Maxwell’s equations
in time-harmonic form are written as

VXE=—jouH (1)

and

VX H=(0v+jwe)E. (2)
Eliminating E from these two equations, we are left with the
following:

Vx[(0+jwe) 'V H| = - jopH. (3)
Given the antenna in Fig. 1, which we assume to be excited
by electric fields directed along the z axis, we can expect to
find the E field confined to the r —z plane and, perpendicu-
lar to this, a lone ¢ component of the H field. In general,
both the E and H fields will be functions of » and z but will
be independent of ¢. Under these conditions, the vector
equation (3) reduces to the scalar form

—Ve [ (o + joe) TV(rH,)| =~ jouH,  (4)
where V

. is defined as a two-dimensional pseudo-Cartesian
operator, namely,

A% ’ i 5
=a,—+a,-—.

e =Wy T Oy, )
The operations indicated by (4) can be performed to give the
following elliptical partial differential equation for the mag-

—rH =0 on the symmeiry axis

E;n =0 on tne surface of the metal antenna

“radiation boundary”

Ey = E, excitation

antenna

typical element

Fig. 2. A bounded problem domain that may be used to model the
antenna described in Fig. 1. Either Dirichlet or Neumann boundary
conditions must be specified at every point on the boundary. The
interior of the domain is completely filled with a set of nonoverlapping
elements such as the quadrilateral shown in the figure.

netic field component H,:

d (Y drH, d Y&rH¢ Z
- - - — +—rH,=0 (6)
or\r dr dz\r 0z ¥
where
Y=(o+jwe)”' and Z=jou. (7)

The electric field components can be derived from (2) as

__YorH,
r r 0z
Y 6rH¢
~E.=- (8)
rooar

Equation (6) can be discretized and transformed into a
weak or Galerkin form as described by Burnett [4]. To do
this, we first define a problem domain by erecting a finite-
sized boundary exterior to the antenna as depicted in Fig. 2.
Part of this boundary lies on the symmetry axis, that is, the z
axis, and the antenna surfaces. The remainder is the so-called
radiation boundary, which is established at some distance
away from the antenna. In general, the optimum location
and shape for the radiation boundary is initially unknown
and is established through a process of trial and error.
Subsequently, a solution for rH(r,z) is assumed to exist
within individual finite elements that, patched together, con-



SUMBAR et al.: IMPLEMENTATION OF RADIATION BOUNDARY CONDITIONS 269

stitute the entire problem domain. Fdr the kth such element,
a trial solution for rH,, can be assumed to take the following
form [4], [9]:

n
er()k)(r,z)z Z aij(k)(r,Z)=U(k)(”aZ)- ®

j=1

; are complex constants that remain to be
determined, N, are real-valued shape functions, and n repre-
sents the number of degrees of freedom or the number of
nodes defining the kth element. Fig. 2 illustrates one of the
many possible element types that.may be used to fill in the
domain: in this example, an eight-node quadrilateral is shown.
Guidelines for the design of an appropriate mesh—the col-
lection of elements that thoroughly patch the domain—can
be found elsewhere [10], [11]. In FEAST, the shape functions
N; are two-dimensional isoparametric polynomials having the
interpolatory property, namely, that N;=1 at node j and
N;=0 at the other nodes making up the element. As a
consequence of this, U at the node j will be equal to the
coefficient a at that node:

Coefficients a;

UB(rj,z))=a;. (10)
The so-called Galerkin weighted residual equation is then
formed for each element by substituting the trial solution,
(9), into the governing equation (6), multiplying the result by
the set of shape functions N, and integrating over the area
of the element. For the kth element this procedure yields

8 (Y IUP 9 (YeURY\ Z
J-=[= 5] -= (= S|+ Zu®
dr\r or dz\r 4z ¥

k)

N® drdz=0

(11)

for i=1,2," - -, n. Equation (11) can be integrated by parts to
give

8 (Y Uu® 8 [Y U
——ff —| = N+ —{ — N® | drdz
or\ r or dz\r 09z
)
Y aU® \ aN®)
+f '(7 or ) o
)

You®\oN®  Z |
+(— ) — + —UPON® drdz =0. (12)

r 0z dz r

Green’s theorem in the r—z pseudorectangular plane can
then be applied to the first double integral in (12), transform-
ing it into the following contour integral in which the path of
integration follows the perimeter / of the element in a
counterclockwise manner:

Yy aU® Y aU®
- ¢ — cos a® +| — cos B8 [NF) dl.
a0 r dz

r or
(13)

The quantities cos a and cos B are the direction cosines
of the outward normal unit vector at a point along the

&, cosa +(—&,)cosf

-&
interior
of element

tangent

element
boundary

¢ direction is into page

-r

Fig. 3. Close-up of the surface of a typical finite element, The curva-
ture of the element side is exaggerated to better show the vector
relationships on the surface.

perimeter. Equation (9) allows us to write (8) as

k)
E® ~ _ X ek = £®
r r oz r
Y oU®
SER s =g (14)
r or ‘

and consequently, (13) as

— ¢ [(£0) cos a® +(~ £®) cos O] NP dl. (15)
(k)

The integrand of (15) has an important physical interpreta-
tion, which can be appreciated by studying Fig. 3. We see
that the quantity in square brackets is the tangential electric
field on a side of element k£ and is considered to have a
positive sense when oriented in a counterclockwise direction.
The concise form of (12) is therefore

Y aU®N\ gN® (Y aURN aNB  Z
— : — — + —U®ON® | drdz
4 or oz r t

r or r Oz

(16)

= ¢é)t§11rcn)(CCW)]Vi(k)dL i=1,2,""-,n.

(k)

Substituting the assumed trial solution, (9), into (16) results
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in the following expression:

[ﬁNl(k) Y,;N}(k) ING Y 8N]‘1")
(k)

V4
+ NO—N®| drdz
r

£

i1 ar r or dz r 9z

— o k 1.
= 96 EEicowy NP dl, i=1,2,,n.

(k)

a7

This expression constitutes the sought-after discretization
of (6) for one element within the problem domain. Evalua-
tion of (17) results in a system of » linear equations in »
unknowns, the unknowns being the vector of a,’s. The unde-
termined coefficients a, reflect the value of Ul=rH d>) at the
n nodes of the element. The components of the matrix
formed from the left-hand side of (17), the so-called stiffness
terms, are symmetric about the diagonal. Ultimately, the
element equations representing all the elements in the mesh
are assembled into one large system. The coefficient mairix
for this global system of equations, denoted by [ K], will be
symmetric about its main diagonal and will be only sparsely
populated by nonzero terms. The contour integrals on the
right-hand side will be assembled into a vector [ f ] which will
incorporate nonzero electric field contributions from bound-
ary nodes only—Dby definition, electric field boundary condi-
tions are built into the Galerkin form of (6). After introduc-
ing additional boundary conditions, FEAST solves the system
of linear equations

[K]le]=[f] (18)

where [a] is the solution vector representing the values of
U(=rHy) at the nodes.

III. ArrLyYING BoUNDARY CONDITIONS

To ensure uniqueness, it is characteristic of field problems
such as (6) that U(=rHj) be specified over part of the
boundary defining the problem domain; that is, some Dirich-
let boundary conditions must be enrolled in (18). As indi-
cated in Fig. 2, the magnetic field on the symmetry axis of a
cylindrical antenna must be zero, U(r,z)=U,=0. On the
conductive antenna surface, a Neumann condition is ap-
plied, namely, that the tangential electric field is zero,
Eanccew)(F» 2) =&, =0. At the antenna feed, either a cur-
rent or a voltage excitation may be implemented as nonzero
Dirichlet or Neumann boundary conditions, respectively.

Over the radiation boundary illustrated in Fig. 2, neither
U nor &,,cowy is known in advance. However, if the
boundary is sufficiently far removed from the antenna and if
the medium is homogeneous, we do know that

nXE
H-= . (19)
n
The unit vector n points in the direction of propagation,
which is radially outward from the center of the antenna,
and n is the complex intrinsic impedance of the medium:

Jjou
n=1/ ———— =YZY.

2
o+ jwe (20)

The integrand on the right-hand side of (17) can then be
recast in terms of U by substituting

(21)

n
Eancowy = —nHy = — 7”H¢

that is,

@Otan(CCW) =

~ s
y

= —ypU. (22)

Specification of &,,ccw, in this way effectively imple-
ments an absorbing boundary condition. This approach will
be strictly valid only in homogeneous media where the radia-
tion boundary surface lies perpendicular to the direction of
propagation and is located in the far field of the antenna.
For cases not satistying these conditions, a mathematically
induced “reflected” wave will propagate from the radiation
boundary into the problem domain, disrupting solution accu-
racy. In general, the degree to which these restrictions can
be violated while still yielding accurate results is a matter of
trial and error. It helps if the radiation boundary is approxi-
mately perpendicular to the direction of propagation and if
the inhomogeneities are localized to the near-antenna re-
gion. Further, if the materials surrounding the antenna are
electrically lossy, the magnitude of both the outgoing and
“reflected” electromagnetic waves will be attenuated, and as
a result, the accuracy of the near-antenna field solution will
be less sensitive to the shape and location of the radiation
boundary. The errors involved with the use of absorbing
boundary conditions for problems in general wave motion
have been discussed by Bayliss and Turkel [12] and Engquist
and Majda [13].

Now, to apply (22) over an outside boundary of an external
element, the, trial solution (9) is substituted for U to give

n
gtgi]r(l)(CCW)(r’ Z) == V(k)U(k)(ra Z) == V(k) Z (1]1\7](1{)(7‘,2).
j=1
(23)

The force vector integral (right-hand side of (17)) is subse-
quently written as

el
$ iflcon =~ § (40 £y it
(k) (k) j=1

=

a, SéNJ(k)V(k)Nz(k) di,
(k)

j=1

i=1,2,--,n. (24)
This quantity is algebraically similar to the stiffness terms,
that is, those integrals on the left-hand side of (17). Essen-
tially, the radiation boundary condition contributes addi-
tional terms in the coefficients a. As such, (18) may be
expressed in closed form by transferring these additional
terms from the right-hand to the left-hand side of (18).
Fortunately, the interpolatory nature of the shape functions
greatly simplifies the evaluation of the integral in (24). More-
over, the symmetry of the global stiffness matrix is preserved.

Ordinary Neumann boundary conditions are applied by
evaluating the line integrals on the right-hand side of (17)
with specified values of &7, ccw) After all the Neumann
conditions are set, the Dirichlet conditions are specified by
constraining the solution vector to take on specified values at
the nodes in question. Given the interpolatory nature of the
shape functions, we arrange for 4,, = U, at node m. This is
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Fig. 4. Diagram of two monopole antenna configurations.

accomplished in (18) with the following treatment:

i Kll Kl,m—l 0 Kl,m+1
Kmfl,l o Km~1,m—1 0 Km—-l,m+1
0 0 1 0
Km+l,1 Km+1,m*1 0 . Km+1,m+1
| Ktl Kt,m—l 0 K!,m+1

The subscript ¢ refers to the total number of nodes associ-
ated with the mesh. A similar procedure is executed for
every node at which a Dirichlet boundary condition is de-
fined. Essentially, members of row m and column m in the
stiffness matrix are replaced by zeros except on the diagonal,
where a 1 is substituted. The force vector is then modified to
take into account the presence of the boundary condition.
Note that after (18) is solved, the solution at node m will be
exactly the value specified. ‘

The next section reviews some data generated by FEAST
using the boundary conditions just described. All of the cases
are problems in wire-antenna radiation.

IV. TypricaL PROGRAM RESULTS

~ The analysis of two very different antenna configurations
is presented here. In one case we have a bare monopole
antenna radiating into free space, in the other a dielectric-
coated monopole radiating into a lossy medium. Both anten-

nas are situated above a perfectly conducting ground pliae.

The two configurations are illustrated in Fig. 4. Their electri-
cal characteristics were calculated using the electrical-solver
portion of FEAST. Utilizing the full capacity of the available
computer hardware, a network of 424 quadratic isoparamet-

Ban(cewy =—€U,

radiation boundary
(extending from r toz axes)

0, z- axis

U=

an(cowy =0, 1 - axis and antenna surface

&an(coW) =&, antenna excitation

Fig. 5. The problem domain and boundary conditions used by FEAST
to calculate the electromagnetic fields near the monopole antennas of
Fig. 4. ‘

T [ fl_ KlmUO,,,
: fm—l_ Km—l,mUOm i
0 ay |= Uy, . (25)

fm+1_ Km+1,mU0m

1 fi _KthOm J

ric triangular and quadrilateral elements comprising 943
nodes was used to patch the finite element mesh. The
problem domain was bounded as shown in Fig. 5.

Specifying as it does a homogeneous, lossless medium, the
first case represents one of the simplest of antenna prob-
lems. FEAST was used to calculate the distribution of cur-
rent along the surface of a bare monopole in free space at a
frequency of 114 MHz. Antenna dimensions were as follows
(refer to Fig. 4): h /Aq=0375, a/ry=0.0254, and b /a=
1,189, where A, is the free-space wavelength. The result is
compared in Fig. 6 with a theoretical .model based on a .
transmission line analogy [14]. The current distribution was
derived from the field quantity U(=~ rH,) along the surface
of the antenna by evaluating the boundary condition for the
tangential magnetic field at a perfect conductor, namely,
n X H=J,. Another parameter, driving point admittance,
was obtained by dividing the current on the antenna at a
point which is level with the ground plane by the interelec-
trode voltage at that location. A numerical integration of the
r-directed electric field estimated this voltage. Fig. 7 com-
pares the driving point admittances calculated with FEAST
to a set of theoretical data for monopoles of varying length
[14].
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Fig. 6. Normalized antenna current distribution for a bare monopole
over a perfectly conducting ground plane radiating into free space. The
frequency is 114 MHz, h /A, =0.375, a /A, =0.0254, and b /a=1.189
where A is the free-space wavelength. FEAST output is compared with
theoretical data published by King [14].
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Fig. 7. Antenna driving point admittance versus antenna length for a
bare monopole over a perfectly conducting ground plane radiating into
free space. The frequency is 114 MHz, a /A, = 0.0064, and b /a = 1.189,
where A is the free-space wavelength. FEAST output is compared with
theoretical data published by King [14].

The simulation results for the bare monopole in free space
show very good agreement with selected theory. Some devia-
tion is apparent in the admittance curve of Fig. 7 for long
antenna lengths. This is probably a consequence of using too
coarse a finite element mesh to model those cases, as the
radial and axial extent of the mesh was scaled to be about 12
times A while the total number of nodes remained fixed.

A far more severe test of FEAST was to model insulated
monopoles immersed in a lossy medium. A signal frequency
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Fig. 8. Current distribution along a dielectric-coated monopole im-
mersed in a lossy medium at a frequency of 114 MHz. Antenna dimen-
sions and material properties are as follows: Bh=m /2, where 8 is
2 /A and A is the wavelength in the lossy material, 2a = (.25 in. (6.35
mm), b/a=1.125 D /2a =4, ¢, (medium) =78, ¢, (coating) =1, and o
(medium) =18%107> S/m. FEAST output is compared with experi-
mental data published by Iizuka [15].
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Fig. 9. Driving point admittances of dielectric-coated monopoles of
varying length immersed in a lossy medium. The frequency is 114 MHz;
B is 27t /X and A is the wavelength in the lossy material, 2a = 0.25 in.
(6.35 mm), b/a=1.125, D /2a =125, ¢, (medium) = 78, €, (coating) =
2.46, and o (medium)=18x10"3% S/m. FEAST output is compared
with experimental data published by lizuka [15].

of 114 MHz was applied to an antenna having a length
Bh =1 /2, where B is 27 /X and A is the wavelength in the
lossy material. The antenna diameter 2a was 0.25 in., and
b/a=1.125. The ratio of the diameter of the dielectric
sheath, D, to the diameter of the antenna, 2a, was 4.0; its
dielectric constant was taken to be 1.0. For the lossy exterior
medium, a dielectric constant of 78.0 and an electrical con-
ductivity, o, of 18X107° S/m were assumed. Again, the
current distribution and driving point admittance were evalu-
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ated. The results appear in Figs. 8 and 9. In this case, the
program data are compared with the experimental results of
Tizuka [15].

Results for the case of the codted monopole in a lossy
medium are good; FEAST was able to satisfactorily replicate
the general shape of the current distribution and admittance
curves. In this instance, the accuracy of lizuka’s data may be
suspect, as noted by others [16].

V. CONCLUSIONS

It is apparent from Figs. 6 through 9 that FEAST, with its
novel radiation-boundary-condition approach to the simula-
tion of electromagnetic propagation, can approximate the
electrical characteristics of monopole antennas quite well. In
addition to the antenna systems described here, other an-
tenna configurations were tested, including bare dipoles in
free space, bare dipoles in lossy materials, and insulated
monopoles in free space. These simulations likewise yielded
satisfactory results for the particular geometries con51dered
[17].

The appeal of radiation boundary conditions for studying
wave propagation in conjunction with the finite element

. method lies in their ease of implementation and in a reassur-
ing physical interpretation. No special elements need to be
designed; nor are additiorial analysis methods required, mak-
ing it possible to introduce them into other existing computer
codes.
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